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SUMMARY

This paper presents a general direct integral formulation for potential flows. The singularities of Green’s
functions are desingularized theoretically, using a subtracting and adding back technique, so that
Gaussian quadrature or any other numerical integration methods can be applied directly to evaluate all
the integrals without any difficulty. When high-order quadrature formulas are applied globally, the
number of unknowns can be reduced. Interpolation functions are not necessary for unknown variables in
the present paper. Therefore, the present method is much simpler and more efficient than the conven-
tional one. Several numerical examples are calculated and compared satisfactorily with analytical
solutions or published results. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: arbitrary-order boundary element method; non-singular formulation; potential problems

1. INTRODUCTION

Since Hess and Smith [1] presented their famous panel methods to solve three-dimensional
potential flow problems, numerous schemes have been developed to improve their original
work. Meanwhile, another very power numerical method, the finite element method (FEM),
was also developed for computational problems in engineering and science. It turns out that
many fundamental ideals in FEMs and panel methods are very similar, especially in interpola-
tion techniques. Therefore, panel methods are also called boundary element methods (BEMs)
since their panels or elements are distributed on the boundary only, while FEMs have their
subdivisions in a whole domain.

In the original panel method, a constant density of source is distributed on each panel,
which is called a low-order panel or a constant element. Linear and quadratic functions are
then successively developed as interpolation functions in BEMs to promote the accuracy of
approximations. Until more recently, cubic splines, B-splines, and cubic B-splines have also
been utilized as interpolating functions because they are commonly used for the design of body
shapes in industry. Not only source but also vortex and doublet functions are taken as
singularity functions and distributed on local boundary elements. All of the mentioned
approaches, which determine the strength of singularities at nodal points on the boundary, are
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called indirect methods. A slightly different formulation, introduced by Morino [2] to solve the
velocity potential directly from Green’s identity, is called the direct method.

In both formulations of direct and indirect methods, the existence of singularities and dense
matrices always greatly increases the computational load when algebraic equations are formed
or solved. In order to break up dense matrices, a multi-subdomain scheme is developed to
produce an overall system matrix with a sparse blocked character. A sparse matrix saves
computer memory and computing time for equation solvers, but it also creates some additional
interior boundaries and generates more elements, which can increase the computer effort.
However, those interior elements can be eliminated by static condensation in the final form. In
general, the multi-subdomain approach is efficient for non-linear or slender computational
domain problems [3,4].

When numerical integration is carried out with Gaussian quadrature or any other numerical
methods in local elements for BEMs, good accuracy can be achieved with a few integration
points if the singular point is not located on the element. However, when the singular point is
on the element, the accuracy of numerical quadrature is greatly reduced. Even an increase in
the number of Gaussian quadrature points is still of no help when the behavior of integrand
is close to the singular point. To solve this difficulty in the numerical integration of
singularities, mapping methods were developed by many researchers [5–7]. Usually, different
kinds of interpolation functions [7,8] have different analytical forms to be expressed for those
singular elements, and such desingularity procedures are complex and lengthy, even for
quadratic interpolating polynomials. For higher-order interpolation functions, even analytical
expressions are difficult to derive. Only adaptive integration or special numerical quadrature
for singular integrals is available. For the overall computational efficiency, these methods may
not be completely satisfied.

Besides mapping techniques, other types of non-singular formulations were proposed by
researchers [9–14]. In these studies, singular points are moved away from the boundary and
outside the computational domain. Such regularization, which results in a Fredholm integral
equation of the first kind, may lead to uniqueness and ill-conditional problems of the resulting
algebraic equations. In the present study, the definition of the non-singular formulation is
different to the previous one. In our formulation, singular points are still on the body surface,
but the singular behavior is removed by a subtracting and adding back technique from the
Gauss flux theorem. This technique was originally developed by Landweber and Macagno [15]
to regularize three-dimensional singularities. The resultant integral equation is a Fredholm
integral equation of the second kind, where, in general, no ill-conditional problems occur when
the discretized algebraic equations are solved. The difference between the conventional BEM
and Landweber’s approach is not only in the treatment of singular kernels of the integral
equation but also in the numerical procedure for solving solutions. An iterative procedure
defined by recurrence formulas was proposed and it solved problems in their studies [15,16]. As
indicated by Noblesse [17], the convergence of such an iterative procedure is very fast in the
case of longitudinal translation of a slender ellipsoid, but becomes slower when the ellipsoid
becomes oblate. Until the limiting case occurs, where an elliptical disk translates in the
direction normal to its plane, such an iteration fails to converge.

If the non-singular formulation is utilized for BEMs, no special consideration is necessary
for the computation of singular integrals, and the convergence problem due to the iteration
procedure in Landweber’s approach can also be avoided. When the accuracy is considered, the
main errors of BEMs come from interpolation and integration. Since arbitrary functions can
be utilized for the shape of bodies in the present approach, the exact body geometry should be
used if possible. For the same accuracy of numerical integration, either small elements with
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low-order quadrature formula or large elements with high-order quadrature formula can be
used. In general, when a high precision integration rule is applied, the required number of total
nodes can be less, and in practice, a few large elements are preferred for grid generation.
Therefore, larger elements are strongly recommended from both viewpoints of grid generation
and numerical integration. In addition, if the points of collocation chosen are exactly the same
as those of integration, interpolation functions for unknown variables are not necessary, and
it saves computing effort in forming algebraic equations. In the present paper, the shapes of
bodies are exact and the whole body is treated as one element for simplicity, although in
general, this may not be necessary.

2. THEORY AND FORMULATION

The basic potential flow problem in an unbounded domain is briefly formulated. The fluid is
assumed to be inviscid and incompressible, while the flow is assumed to be irrotational. The
flow field is described by a velocity potential F, which satisfies the Laplace equation within the
domain,

92F=0, (1)

and is subject to the impermeable boundary condition on a body surface,

(F
(n

=0, (2)

where n denotes the outward unit normal on a body surface. A boundary integral method
involving Green’s function may be used to solve the boundary value problem. Before the
boundary integral equation is formulated, Green’s identity is introduced. Green’s identity can
be applied over a closed region, relating values of F and its normal derivative (F/(n, if F is
a harmonic function. The potential F(P) at the field point P(x, y, z) can be expressed as

oF(P)=
&

S

!
F(Q)

(

(nQ

[G(P, Q)]−G(P, Q)
(F(Q)
(nQ

"
dSQ, (3)

where o equals 1 when P is inside the domain, 1/2 when P is on a smooth part of the boundary
surface, and zero when P is outside the domain. Q represents the source point (j, h, z) on the
surface S over which the integration is performed, and G is the free space Green’s function for
Laplace equation.

G(P, Q)=
! ln r/2p

−1/4pr
in two dimensions,

in three dimensions,
(4)

where r is the distance between P and Q. By analytical continuation, the exterior incident flow
potential FI can be extended into the interior region, so that the interior region is the domain.
Then Green’s formulation for FI, can be expressed as

oFI(P)=
&

S

!
FI(Q)

(

(nQ

[G(P, Q)]−G(P, Q)
(FI(Q)
(nQ

"
dSQ. (5)

When the scattering velocity potential, FS, is considered, the domain is in the exterior
instead of the interior. Therefore, the coefficient o in Green’s formula should be exchanged,
and the scattering velocity potential FS can be expressed in a slightly modified form.
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(o−1)FS(P)=
&

S

!
FS(Q)

(

(nQ

[G(P, Q)]−G(P, Q)
(FS(Q)
(nQ

"
dSQ. (6)

The total velocity potential F in the exterior region is the summation of the incident potential
and the scattering potential,

F=FIFS. (7)

Adding Equations (5) and (6) and rearranging the result produces the following:

(1−o)F(P)= −
&

S

!
F(Q)

(

(nQ

[G(P, Q)]−G(P, Q)
(F(Q)
(nQ

"
dSQ+FI(P). (8)

Applying the impermeable boundary condition (2) to Equation (8), when P is on the body
surface, gives

(o−1)F(P)+
&

S

!
F(Q)

(G(P, Q)
(nQ

"
dSQ=FI(P). (9)

Gauss’s flux theorem is derived from Equation (3) by setting the velocity potential on S to
be constant, then the normal derivative of velocity potential vanishes in the interior region, and
we have&

S

(G(P, Q)
(nQ

dSQ=o. (10)

By multiplying Equation (10) with a constant value F(P), then adding Equation (9), we obtain

F(P)+
&

S

!
[F(Q)−F(P)]

(G(P, Q)
(nQ

"
dSQ=FI(P). (11)

The above equation is used to solve the velocity potential F(P) on S. If the velocity potential
is continuous in two-dimensional problems, or if the first derivative of velocity potential along
the smooth surface is continuous in three-dimensional problems, the integrand at the left hand
side of Equation (11) can be treated as zero when the field point P(x, y, z) approaches the
source point F(j, h, z). Using this modified formulation, those singularities no longer exist in
the integral equation and any specially numerical treatments for singularities are no longer
needed.

In Equation (2), a stationary boundary condition is assumed in the present paper for
simplicity. If a non-stationary boundary condition occurs, a similar procedure to remove the
second singular kernel in Equation (8) is also available in Landweber and Macagno [15] by
using the theorem of electrostatic capacitance.

3. NUMERICAL PROCEDURE AND RESULTS

In the numerical approach, efficiency is of the most important considerations. A method with
less computing points and higher accuracy is preferred. In a one-dimensional integral,
Gaussian quadrature is usually a good choice. In a surface integral, minimal-point integration
rules or product Gaussian rules are frequently used on each element for BEMs. However, there
has been no general formula, until now, for minimal-point integration rules to obtain locations
and weighting factors of integration points for an arbitrary precision [18]. Therefore, product
Gaussian rules are more convenient if an arbitrarily high-order precision is needed when
numerical integration is carried out on a large element.
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In Equation (11), the numerical difficulty from singularities has been completely removed,
and its integrand can be computed straightforwardly if the geometric data of the surface are
known. The information needed for the surface integral is the normal vector and the first
fundamental form of surface integral at nodal points. Usually, the body surface is either
exactly known or described by approximate functions such as quadratic polynomials, splines,
rational polynomials, or any other parametric forms. In traditional BEMs, the same interpola-
tion function is used for both the shape of bodies and unknown variables for every element.
In the present paper, those approximate functions are not assumed for unknown variables in
the numerical integration.

In our formulation, the locations of collocation points in elements are exactly the same as
those for numerical integration nodes. The integral in Equation (11) is discretized into a finite
sum at every integration point by the numerical procedure, and the system of algebraic
equations is expressed as

%
N

j=1

(AijFj)=FIi, (12)

where Aij are influence coefficients corresponding to Equation (11), N is the total number of
collocation points on all elements, Fj is the velocity potential at the jth node, and FIi the
incident velocity potential at the ith node. Aij are thereby given by

Aij=Í
Ã

Ã

Á

Ä

− (r	 ij ·n	
j
)r ij

− (1+a)vj/2ap

1+ %
N

k=1,k" i

(r	 ik ·n	 k)r ik
− (1+a)vk/2ap

j" i

j= i
(13)

where r� ij is the vector from the jth node to the ith node, rij is the distance between the ith and
the jth nodes, vj is the weighting factor at the jth point from quadrature formulas for surface
integral and a=1 in two dimensions, and 2 in three dimensions. The most important feature
in Equation (13) is the calculation of Aii, which corresponds to the calculation of singular
points in traditional BEMs. Usually, the behavior near singularities needs a special mapping or
complex calculation in traditional BEMs. For different interpolation functions, different
analytical functions are derived to evaluate the integration of singularities. These complicate
expressions frequently take pages in length, and are tedious for programming and computa-
tion. In Equation (13), Aij is computed only once for every nodal point when i" j. Aii needs
no additional effort except the summation, because all the terms in the summation are already
calculated after Aij, i" j, are computed. Therefore, it is much more convenient than traditional
BEMs for the computation of singular integrals. Furthermore, in traditional BEMs, total
influence coefficients must be summed up from all the adjacent elements common to the
desired node. In the present method, only the distance between the nodes is computed, and no
other interpolation functions need to be evaluated. Therefore, the efficiency of overall
computation is improved.

Among the following examples, all the collocation nodes are located at one element only.
Although such a distribution may not be the most efficient one, it is the simplest and the
accuracy is sufficient for demonstration. The first example in our illustration is for the
scattering problem of a uniform flow past an elliptic cylinder, centered at origin, with the
major and minor semiaxes, a=4 and b=1, respectively. For a uniform flow of magnitude U
along the major axis, a positive x axis, the velocity potential on the ellipse surface can be
expressed as
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Table I. The values of velocity potential at given nodal points of an ellipse
(a :b=4:1)

x/a AnalyticalCalculated

1.250001.249941.00000
1.154851.154800.92388

0.70711 0.88384 0.88388
0.38268 0.47833 0.47835

0.00000 0.000000.00000
−0.47833 −0.47835−0.38268

−0.70711 −0.88384 −0.88388
−1.15480 −1.15485−0.92388
−1.24994 −1.25000−1.00000

F(x, y)=U(a+b)x. (14)

In the numerical calculation, 16 nodes are uniformly distributed on the ellipse surface along
the polar angle (05uB2p), and the trapezoidal rule is selected for integration. Since the flow
is symmetrical about x-axis, only the result on the upper ellipse is listed in Table I.

In comparison with the results of Shultz and Hong [13], the root mean square errors (E2) of
128 computed points for the same ellipse are − log10E2=2.94, 2.90 and 4.12 for weak, strong,
and over-determined systems, respectively. In this study, − log10E2=5.08 with 16 computed
nodes as shown in Figure 1. In fact, if the body surface is smooth, the kernel of Equation (11)
for two-dimensional problems is continuous along the boundary. When the even spacing
trapezoidal rule is applied for such integrals, the error of numerical integration decays
exponentially in theory. Therefore, for the same accuracy, the required computed nodes in our
formulation can be much less.

The second example in our illustration is for the scattering problem of a two-dimensional
flow along the major axis of an ogive in which its surface is not smooth. The definition of the
ogives is given in equation (15) [17]

�x �= (1− t2)/(1+ t2+2t(1−b2)/(1+b2)),

�y �=4bt/(1+b2)/(1+ t2+2t(1−b2)/(1+b2)), (15)

Figure 1. Root mean square errors of velocity potentials for an ellipse (a :b=4:1).
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Figure 2. The shape of a quarter ogive with b=1/4.

where b is the thickness ratio (05b51), and t= [tan(l/2)]d with d=2[1− (2/p) tan−1 b ] and
the parameter l varies between 0 and p/2. Ogives are symmetric about both x and y axes, so
1/4 of the ogive with b=0.25 is plotted in Figure 2. The total potential on the surface of an
ogive is given by Equation (16) [17]

f=
x

�x � cos l
,�

1−
2
p

tan−1 b
�

. (16)

Because of the symmetry, computed nodes are distributed on the first quadrant only. Because
the ogive is not smooth at the ends, the normal vectors of both ends do not exist. Therefore,
Gaussian quadrature formulas without end points are selected to evaluate these numerical
integrations. The root mean square errors (E2) between the computed and exact values are
shown in Figure 3 for different numbers of nodes. Although the speed of convergence no
longer decays exponentially, the high-order algebraic convergence still maintains.

Other examples are for the scattering problems of a uniform flow past a sphere and an
ellipsoid, respectively. Because of symmetry about the x–z and x–y planes, only 1/4 of the
surface is calculated. In the third example, the sphere of radius a is calculated with 8×4

Figure 3. Root mean square errors of velocity potentials for the ogive with b=1/4.
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Table II. The values of velocity potential at given nodal points of a sphere

x/a Calculated Analytical

0.93057 1.395851.39463
0.66999 1.00462 1.00499

0.495010.495660.33001
0.06943 0.10527 0.10415

−0.06943 −0.10527 −0.10415
−0.49566 −0.49501−0.33001

−0.66999 −1.00462 −1.00499
−1.39585−1.39463−0.93057

Gaussian points. Both analytic and calculated results of the non-dimensional velocity potential
on the sphere surface are listed in Table II. The same problem was solved recently by Zang et
al. [7], by using 161 nodal points for the quadratic element and 209 nodal points for the linear
element on a quadrant of a sphere surface to obtain about the same order of accuracy, the
fourth decimal digit, with the same result as in this study. Therefore, comparing results with
quadratic elements in the conventional method for the same accuracy, the number of required
nodes on a quadrant of a sphere surface in our case is about 1/10.

The last example is an ellipsoid with three semiaxes, a=4, b=1 and c=2. Gaussian points
(16×8) are distributed over 1/4 of the ellipse surface. The analytic solution on the elliptic
surface can be found in the hydrodynamic book by Milne-Thompson [19].

F(x, y, z)=1.12657 Ux. (17)

The analytical and computational results of the velocity potential on the ellipsoidal surface are
compared in Table III, and the accuracy is up to the fourth decimal digit. All these examples
confirm the great accuracy of the present method.

Table III. Potential values at given nodal points of an ellipsoid (4:1:2)

Calculatedx/a Analytical

1.1049 1.10420.98014
1.01201.01200.89833

0.8594 0.85930.76277
0.66670.59172 0.6666
0.4600 0.46000.40828
0.26730.23723 0.2673

0.11450.11460.10167
0.02240.01986 0.0224

−0.0224 −0.0224−0.01986
−0.10167 −0.1146 −0.1145

−0.2673 −0.2673−0.23723
−0.4600−0.4600−0.40828

−0.6667 −0.6666−0.59172
−0.76277 −0.8594 −0.8593

−1.0120−1.0121−0.89833
−1.1042−1.1049−0.98014
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4. CONCLUSIONS

A non-singular direct formulation of boundary integral equation for potential flows is
presented. In two-dimensional flows, if a body is smooth, errors of numerical integration decay
exponentially when the trapezoidal rule is applied, and the solution also converges exponen-
tially. If the body is not smooth, then the solution is still of high-order convergence when
Gaussian quadrature is applied. In three-dimensional flows, the total number of nodal points
for a smooth body can be reduced by one order in the test case when comparing with the
conventional method for the same accuracy. Therefore, the boundary element method is much
improved in the present formulation. In addition, since no special numerical treatment for
singularities, and no interpolation functions for integration is needed, the present method
greatly reduces the total computational procedure.
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